線性代數設三階實對稱矩陣a的特徵值

2021-03-03 20:54:45 字數 1816 閱讀 5548

1樓:喔是華安

求答案,謝謝,有沒有這題的具體解答,要補考了求解答,謝謝你了。

線性代數:設三階實對稱矩陣a的特徵值為λ1=-1,λ2=λ3=1,已知a的屬於λ1=-1的特徵向量為p1={0,1,1}

2樓:匿名使用者

第一個問題:

由於屬於不同特徵值的特徵向量是相互正交的。

因此屬於內1的特徵向容

量與屬於-1的特徵向量正交,假設屬於1的特徵向量為(x,y,z)則:

y+z=0,x任意

這樣得到基礎解系 α=(1,0,0) β=(0,1,-1)屬於1的特徵向量可以視為α和β的線性組合!也就是說矩陣a屬於1的特徵子空間是二維的。

你說的p2=,也是屬於1的特徵向量,但是還應該找一個與線性無關,且與p1=正交的向量。這樣才能保證特徵子空間是二維的。

第二個問題:

兩個向量α和β判斷相關性很簡單,令k1*α+k2*β=0.如果α和β都有n個分量,得到一個具有n個方程2個未知數的方程,寫出係數矩陣a,如果係數矩陣的秩=2,則線性無關。如果係數矩陣的秩<2,則線性相關!

線性代數題目:設三階矩陣a的特徵值為λ1=2 λ2=-2 λ3=1 對應的特徵值向量依次為p1=(0 1 1)p2=(1 1 1)

3樓:匿名使用者

【解法一】

由ap1=λ1p1,ap2=λ2p2,ap3=λ**3,知p1,p2,p3是矩陣a的不同特徵值的特徵向量,它們線性無關。利用分塊矩陣,有

a(p1,p2,p3)=(λ1p1,λ2p2,λ**3),因為矩陣(p1,p2,p3)可逆,故

a=(λ1p1,λ2p2,λ**3)(p1,p2,p3)-1根據矩陣乘法運算,得a為

-2 3 -3

-4 5 -3

-4 4 -2

【解法二】

因為矩陣a有3個不同的特徵值,所以a可相似對角化,有q-1aq = b,q=(p1,p2,p3),b為2 0 0

0 -2 0

0 0 1

那麼a=qbq-1=... 下略。

【評註】

反求矩陣a的過程,解法一是通過特徵值,特徵向量與a的關係求解。解法二是通過相似對角陣來求解。

newmanhero 2023年4月18日15:34:37希望對你有所幫助,望採納。

4樓:prince於辰

由於三階矩陣a有3個不同的特徵值,故矩陣a可相似對角化,即存在可逆矩陣p,使得:

p▔*a*p=b (其中p▔為p的逆陣,b為對角陣)p=(p1,p2,p3),b=diag(λ1,λ2,λ3)則a= p*b*p▔

5樓:匿名使用者

題目中給出的特徵值向量依次為 p1=(0 1 1),p2=(1 1 1),p3=(1 1 0)錯誤,

不同特徵值的特徵向量應互相正交。

記特徵值矩陣 ∧ = diag(λ1, λ2, λ3), 特徵向量矩陣 p = (p1, p2, p3), 則

ap = p∧, a = p∧p^(-1).

6樓:匿名使用者

由ap1=λ1p1,ap2=λ2p2,ap3=λ**3,知p1,p2,p3是矩陣a的不同特徵值的特徵向量,它們線性無關。利用分塊矩陣,有

a(p1,p2,p3)=(λ1p1,λ2p2,λ**3),因為矩陣(p1,p2,p3)可逆,故

a=(λ1p1,λ2p2,λ**3)(p1,p2,p3)-1根據矩陣乘法運算,得a為

-2 3 -3

-4 5 -3

-4 4 -2

線性代數習題,線性代數習題

題1 方法1 d2中的矩陣,與d1中的矩陣,是相似矩陣,滿足特徵值相同,因此行列式相等。方法2 行列式d1,第2行乘以b,第2列除以b,第3行乘以b 2,第3列除以b 2,第n行乘以b n 1 第n列除以b n 1 即可得到行列式d2,而每一步變換,行列式都不變,因此兩者相等 題3 第2 n 1列,...

線性代數題目,線性代數題目

由於k1 1,0,2 t k2 0,1,1 t是齊次方程組ax 0的通解,因此a有個二重特徵值0,對應的特徵向量為 1,0,2 t和 0,1,1 t 又由於a 3 則 3是a的另一個特徵值,且對應的特徵向量為 1,2,3 t 因此構造矩陣p x1,x2,x3 其中x1 1,0,2 t,x2 0,1,...

線性代數問題求解答,線性代數,求解答

首先根據多項式求b的特徵值。再判斷是否是等特徵值。望採納,謝謝 高等數學一年頭同的題目不會。直接把 a 看作對角陣 1,0,0 0,0,0 0,0 1 然後代入求得 a 3 a 0,所以 b 2e 因為矩陣baia有三個不同的特徵值du,所以zhi矩陣a可對角化。即存在dao 可逆矩陣p,使 回得p...