設fx在x0的某一鄰域記憶體在連續的三階導數,且fx

2021-03-03 22:06:19 字數 3576 閱讀 3084

1樓:

不是極值點

f'''(x)≠0,所以f''(x)在x0的兩邊是異號的因此f'(x)在x0兩邊就是先減後增或先增後減,是同號的於是f(x)在x0兩邊就是始終增或者始終減故不是極值點

若函式y=f(x)在點x0的某鄰域內有連續的三階導數

2樓:

^f(x)在x0的鄰域內泰勒,有:

y=f(x0)+f'(x0)(x-x0)+f"(x0)(x-x0)^2/2!+f"'(x0)(x-x0)^3/3!+....

因為f'(x0)=f"(x0)=0, 所以y=f(x0)+f"'(x0)(x-x0)^3/3!+....

當x=x0+h時,y-f(x0)≈ f"'(x0) *h^3/3!

當x=x0-h時,y-f(x0)≈-f"'(x0)* h^3/3!

因為f"'(x0)不為0,所以上述x0左右鄰域內y-f(x0)的符號是相反的,所以f(x0)不可能是極值點。

設函式f(x)在點x=0處的某鄰域內有連續的二階導數,且f'(x)=f''(x)=0

3樓:

選d

在x=0的右側臨近,f ''(x)/sinx>0,

所以f ''(x)>0,曲線是凹弧;在x=0的左側臨近,f ''(x)/sinx>0,

所以f ''(x)<0,曲線是凸弧。從而,(0,f(0))是拐點。

設y=f(x)在x=x0的鄰域內具有三階連續導數,如果f(x0)二階導數=0,而三階導數不等於0

4樓:匿名使用者

(x0,f(x0))一定是拐點。

f'''(x0)=lim f''(x)/(x-x0)。

假設f'''(x0)>0,根據保號性,在x0的某去心鄰域內,f''(x)/(x-x0)>0,進而在x0的左側f''(x)<0,右側f''(x)>0,所以(x0,f(x0))是拐點。

假設f'''(x0)<0,根據保號性,在x0的某去心鄰域內,f''(x)/(x-x0)<0,進而在x0的左側f''(x)>0,右側f''(x)<0,所以(x0,f(x0))是拐點。

設f(x)在點x=0的某一鄰域內具有二階連續導數,且limx→0f(x)x=0,證明級數∞n=1f(1n)絕對收斂

5樓:遺棄的紙湮

∵f(x)在點x=0的某一鄰域內具有二階連續導數,即f(x),f'(x),f''(x)在x=0的某一鄰域均連續

且:lim

x→0f(x)x=0

∴f(x)=f(0)=0 lim

x→0f(x)?f(0)x=0

∴f』(0)=0

∴lim

x→0f(x)

x=lim

x→0f』(x)

2x=lim

x→0f』(x)?f』(0)

2x=1

2f』』(0)

∴lim

n→∞|f(1n)

(1n)|是一常數

∴由比值判別法可知原級數絕對收斂

設f(x)在x=0的某一鄰域內具有二階連續導數,且lim(x→0)f(x)/x=0,證明級數f

6樓:小六的煩惱

f ′ (a)=0,f ′′ (a)≠0 只是f(x) 在x=a 處取極值的充分條件,非必要條件.

比如f(x)=x^4 ,有f ′ (0)=f ′′ (0)=0 但在 x=0 處顯然是取極小值.

就這題而言:

因lim(x→0) f ′′ (x) / |x| =1 ,由區域性保號性有,

存在一去心鄰域u° (0,δ) ,使得對在這個去心鄰域內有 f ′′ (x) / |x| > 1 / 2

所以有f ′′ (x)> |x| / 2 >0 ,而由連續性有f ′′ (0)=0

去是,在鄰域u°(0,δ) 內有f ′′ (x)≥0 ,且只x=0 處f ′′ (x)=0

於是f ′′ (x) 在鄰域u°(0,δ) 內嚴格單增

於是在該鄰域內有xf ′ (0)=0 ,

導數是由負變正,所以取極小值.

設f(x)在點x=o的某一鄰域內具有連續的二階導數,且lim(x->0)f(x)/x=0,證明:級數∑(n=1,∞)f(1/n)絕對收斂

7樓:匿名使用者

f(x)在點x=o的某一鄰域內具有連續的二階導數

lim(x->0)f(x)/x=0,則:

f(0)=f'(0)=0

則:lim(x->0)f(x)/x^2=lim(x->0)f'(x)/2x=0

等價於lim(n->∞)f(1/n)*n^2=0,因此

lim(n->∞)∑f(1/n)∞)∑1/n^2絕對收斂

或利用泰勒公式:f(x)=f(0)+f'(0)x+f''(ξ)/2×x^2,ξ介於x與0之間.

f(x)在點x=0處具有連續的二階導數,所以f''(x)有界,即存在正數m,使得|f''(x)|≤m.

因為lim(x→0)f(x)/x=0,所以f(0)=lim(x→0)f(x)=lim(x→0)f(x)/x×x=0,f'(0)=lim(x→0)f(x)/x=0

所以,f(x)=f''(ξ)/2×x^2,從而f(1/n)=f''(ξn)/2×1/n^2,ξn介於0與1/n之間.

所以,|f(1/n)|≤m/2×1/n^2

因為∑(1/n^2)收斂,所以∑|f(1/n)|收斂,得∑f(1/n)絕對收斂.

8樓:

利用泰勒公式:f(x)=f(0)+f'(0)x+f''(ξ)/2×x^2,ξ介於x與0之間.

f(x)在點x=0處具有連續的二階導數,所以f''(x)有界,即存在正數m,使得|f''(x)|≤m.

因為lim(x→0)f(x)/x=0,所以f(0)=lim(x→0)f(x)=lim(x→0)f(x)/x×x=0,f'(0)=lim(x→0)f(x)/x=0

所以,f(x)=f''(ξ)/2×x^2,從而f(1/n)=f''(ξn)/2×1/n^2,ξn介於0與1/n之間.

所以,|f(1/n)|≤m/2×1/n^2

因為∑(1/n^2)收斂,所以∑|f(1/n)|收斂,得∑f(1/n)絕對收斂.

設y=f(x)在x=x0的鄰域內具有三階連續導數,三階導數不等於0。

9樓:

(x0,f(x0))一定是拐點。

f'''(x0)=lim f''(x)/(x-x0)。

假設f'''(x0)>0,根據保號性,在x0的某去心鄰域內,f''(x)/(x-x0)>0,進而在x0的左側f''(x)<0,右側f''(x)>0,所以(x0,f(x0))是拐點。

假設f'''(x0)<0,根據保號性,在x0的某去心鄰域內,f''(x)/(x-x0)<0,進而在x0的左側f''(x)>0,右側f''(x)<0,所以(x0,f(x0))是拐點。

設函式fx在x0點的某個鄰域內連續,且limx0f

因為 limx 0 f x ex 1 2,du且zhi limx 0ex 1 0,所以 f 0 lim x 0f x 0,利用導數的定dao義可得 f 版0 lim x 0f x f 0 x?0 lim x 0f x x lim x 0f x ex 1?ex?1 x lim x 0f x ex 1l...

設f x 在x 0的鄰域內具有二階導數,且lim x趨於0 1 x f x

1 e e limln 1 x f x x x極限存在,故 f 0 0,limf x x 0故f 0 03 lim x f x x x lim1 f x x 故f 0 4 2 e limln 1 f x x x e limf x x e 2 設f x 在x 0的鄰域內具有二階導數,且lim x趨於0...

若f x 在x0處可導,判斷f x 的絕對值在x0處的可導性

連續但不一定可導復。制 f x 0時 即x 為非 零點時 f x 在x 處可導,則 f x 在x 處亦可導 f x 0時 即x 為零點時 f x 0 即x 同時為駐點時 f x 在x 處可導,f x 在x 處亦可導,f x 0 即x 不同時為駐點時 f x 在x 處可導,f x 在x 處不可導。以f...