行列式按行列展開法則行列式按行列法則

2021-03-07 03:02:28 字數 1885 閱讀 3845

1樓:墨陌沫默漠末

行列式依行(expansion of a determinant by a row)是計算行列式的一種方法,設ai1,ai2,…,ain (1≤i≤n)為n階行列式d=|aij|的任意一行中的元素,而ai1,ai2,…,ain分別為它們在d中的代數餘子式,則d=ai1ai1+ai2ai2+…+ainain稱為行列式d的依行。

如果行列式d的第i行各元素與第j行各元素的代數餘子式對應相乘後再相加,則當i≠j時,其和為零,行列式依行或依列不僅對行列式計算有重要作用,且在行列式理論中也有重要的應用。

定理1(行列式依行定理) n(n>1)階行列式d=|aij|等於它任意一行的所有元素與它們對應的代數餘子式的乘積的和,即

定理2如果行列式d的第i行各元素與第j行各元素的代數餘子式對應相乘後再相加,則當i≠j時,其和為零。因此有 [3]

2樓:匿名使用者

其餘項沒有變化,只是將中間加法的那個行,按照算式中每一列的第一項全提取做成第一個子式,然後是每一列的第二項全提取做成第二個子式,類推就做出了

行列式按行列定理、行列式按行列法則,是不是一回事?還是說不一樣?分別是什麼?

3樓:匿名使用者

一回事,叫法不同罷了。

一個行列式的值等於其中任何一行(或一列)的所有元素與它們各自的代數餘子式的積的和。

4樓:蒼林翠竹

都是一樣的,就是拉普拉斯定理,沒有別的

行列式按行列 20

5樓:匿名使用者

關於你**上的

題目有點複雜,一般

人是做不出來的

行列式按行定理是怎麼回事

6樓:小樂笑了

就是拉普拉斯定理的一種簡單情況,該行各元素分別乘以相應代數餘子式,然後求和,就等於行列式的值

7樓:曉曉江蘇

行列式按行展開的定理是拉普拉斯定理的一種簡單情況,該行各元素分別乘以相應代

數餘子式求和,就等於行列式的值.

例如:d=a11·a11+a12·a12+a13·a13+a14·a14

aij是aij對應的代數餘子式

aij=(-1)^(i+j)·mij

mij是aij對應的餘子式。

(-1)^1+1=1

代數餘子式前有(-1)的冪指數。

a11(-1)^(1十1)=1

所以a11=(-1)^(1+1)·m11=m11a14=(-1)^(1+4)·m14

線性代數,行列式按行法則

8樓:匿名使用者

公式沒問題,但你把代數餘子式算錯了,漏了前面的代數符號,正確的寫法如圖所示。

行列式按行是什麼意思?

9樓:戀翼

行列式行列式在數學中,是一個函式,其定義域為det的矩陣a,取值為一個標量,寫作det(a)或

行列式可以看做是有向面積或體積的概念在一般的歐幾里得空間中的推廣。或者說,在 n 維歐幾里得空間中,行列式描述的是一個線性變換對「體積」所造成的影響。

性質①行列式a中某行(或列)用同一數k乘,其結果等於ka。

②行列式a等於其轉置行列式at(at的第i行為a的第i列)。

③若n階行列式|αij|中某行(或列);行列式則|αij|是兩個行列式的和,這兩個行列式的第i行(或列),一個是b1,b2,…,bn;另一個是с1,с2,…,сn;其餘各行(或列)上的元與|αij|的完全一樣。

④行列式a中兩行(或列)互換,其結果等於-a。 ⑤把行列式a的某行(或列)中各元同乘一數後加到另一行(或列)中各對應元上,結果仍然是a。

範德蒙德行列式,範德蒙德行列式

範德蒙德行bai列式是如下形式的,du 1 1 zhi 1 x1 x2 xn x1 dao2 x2 2 xn 2 x1 n 1 x2 n 1 xn n 1 其第一行回的元素全部是1,可以理解為答x1,x2,x3.xn的零次方 第二行的元素則為x1,x2,x3.xn,即x1,x2,x3.xn的一次方 ...

行列式怎麼算,行列式怎麼算

行列式在bai數學中,是 由解線性du方程組產生的一zhi種算式dao,是取自不同版行不同列的n個元素的乘積權的代數和。舉例 對於二階行列式 a b c d ad bc 詳細可以參見二階行列式 對於三階行列式 a b c x1 x2 x3 y1 y2 y3 結果可以寫為 a x2 y3 x3 y2 ...

線性代數,行列式按行列展開,題目如圖,求詳解

解題需要的定理 bai 行列式的值等於某行du 列的zhi所有元素分別乘以它們對dao應代數餘版子式後所得乘積的和。權 另外,注意一點,某一行元素對應的代數餘子式,與本行元素是無關的。即修改本行元素,不會影響本行的元素對應的代數餘子式 所以第 2 題,顯然我們把第一列元素,替換成題目裡對應的係數,再...