黑洞是怎樣形成的,黑洞是怎樣形成的

2022-11-18 23:56:06 字數 4894 閱讀 4100

1樓:匿名使用者

質量足夠大恆星的核心在自身重力的作用下迅速地收縮,塌陷,由於質量足夠大,壓縮過程中電子之間的排斥了無法抵擋強大的引力作用,原子周圍的電子都被擠壓到原子核內部,從而星體體積越來越小,由於體積越小引力越大。。這樣雙重作用下。。。最後原子核內部的質子中子都被壓縮到一起,這樣的壓縮無休止進行到最後,當密度大到一個零界點(密度大道光線也無法逃出)之後就形成了黑洞。

而質量較小的恆星由於質量引力無法抵抗電子之間的斥力作用而無法進行上述坍縮過程額無法形成黑洞

2樓:哈湫木古

黑洞的產生過程類似於中子星的產生過程;恆星的核心在自身重力的作用下迅速地收縮,塌陷,發生強力**。當核心中所有的物質都變成中子時收縮過程立即停止,被壓縮成一個密實的星體,同時也壓縮了內部的空間和時間。但在黑洞情況下,由於恆星核心的質量大到使收縮過程無休止地進行下去,中子本身在擠壓引力自身的吸引下被碾為粉末,剩下來的是一個密度高到難以想象的物質。

3樓:匿名使用者

一種稱之為強德拉塞卡極限的數值決定黑洞的形成。強德拉塞卡極限是一個穩定的冷星的最大的可能的質量的臨界值,這個值大約是太陽質量的1.5倍。

如果一顆恆星的質量比強德拉塞卡極限小,它最後會停止收縮並終於變成一顆半徑為幾千英里和密度為每立方英寸幾百噸的白矮星。對於恆星還存在另一可能的終態。其極限質量大約也為太陽質量的一倍或二倍,但是其體積甚至比白矮星還小得多。

這些恆星是由中子和質子之間,而不是電子之間的不相容原理排斥力所支援。所以它們被叫做中子星。它們的半徑只有10英里左右,密度為每立方英寸幾億噸。

若比這質量更大的恆星,則會坍縮成一個黑洞。

黑洞是怎麼形成的

4樓:九月

黑洞的產生過程類似於中子星的產生過程:某一個恆星在準備滅亡,核心在自身重力的作用下迅速地收縮,塌陷,發生強力**。當核心中所有的物質都變成中子時收縮過程立即停止,被壓縮成一個密實的星體,同時也壓縮了內部的空間和時間。

但在黑洞情況下,由於恆星核心的質量大到使收縮過程無休止地進行下去,連中子間的排斥力也無法阻擋。中子本身在擠壓引力自身的吸引下被碾為粉末,剩下來的是一個密度高到難以想象的物質。由於高質量而產生的引力,使得任何靠近它的物體都會被它吸進去。

當一顆恆星衰老時,它的熱核反應已經耗盡了中心的燃料,由中心產生的能量已經不多了。這樣,它再也沒有足夠的力量來承擔起外殼巨大的重量。

所以在外殼的重壓之下,核心開始坍縮,物質將不可阻擋地向著中心點進軍,直到最後形成體積接近無限小、密度幾乎無限大的星體。而當它的半徑一旦收縮到一定程度(一定小於史瓦西半徑),質量導致的時空扭曲就使得即使光也無法向外射出——「黑洞」就誕生了。

5樓:匿名使用者

黑洞的產生過程類似於中子星的產生過程;恆星的核心在自身重量的作用下迅速地收縮,發生強力**。當核心中所有的物質都變成中子時收縮過程立即停止,被壓縮成一個密實的星球。但在黑洞情況下,由於恆星核心的質量大到使收縮過程無休止地進行下去,中子本身在擠壓引力自身的吸引下被碾為粉末,剩下來的是一個密度高到難以想象的物質。

任何靠近它的物體都會被它吸進去,黑洞就變得像真空吸塵器一樣.

亦可以簡單理解:通常恆星的最初只含氫元素,恆星內部的氫原子時刻相互碰撞,發生裂變、聚變。由於恆星質量很大,裂變與聚變產生的能量與恆星萬有引力抗衡,以維持恆星結構的穩定。

由於裂變與聚變,氫原子內部結構最終發生改變,破裂並組成新的元素——氦元素。接著,氦原子也參與裂變與聚變,改變結構,生成鋰元素。如此類推,按照元素週期表的順序,會依次有鈹元素、硼元素、碳元素、氮元素等生成。

直至鐵元素生成,該恆星便會坍塌。這是由於鐵元素相當穩定不能參與裂變或聚變,而鐵元素存在於恆星內部,導致恆星內部不具有足夠的能量與質量巨大的恆星的萬有引力抗衡,從而引發恆星坍塌,最終形成黑洞。

跟白矮星和中子星一樣,黑洞很可能也是由質量大於太陽質量20倍的恆星演化而來的。

當一顆恆星衰老時,它的熱核反應已經耗盡了中心的燃料(氫),由中心產生的能量已經不多了。這樣,它再也沒有足夠的力量來承擔起外殼巨大的重量。所以在外殼的重壓之下,核心開始坍縮,直到最後形成體積小、密度大的星體,重新有能力與壓力平衡。

質量小一些的恆星主要演化成白矮星,質量比較大的恆星則有可能形成中子星。而根據科學家的計算,中子星的總質量不能大於三倍太陽的質量。如果超過了這個值,那麼將再沒有什麼力能與自身重力相抗衡了,從而引發另一次大坍縮。

這次,根據科學家的猜想,物質將不可阻擋地向著中心點進軍,直至成為一個體積很小、密度趨向很大。而當它的半徑一旦收縮到一定程度(一定小於史瓦西半徑),正象我們上面介紹的那樣,巨大的引力就使得即使光也無法向外射出,從而切斷了恆星與外界的一切聯絡——「黑洞」誕生了。

根據科學家計算,一個物體要有每秒種7.9公里的速度,就可以不被地球的引力拉回到地面,而在空中饒著地球轉圈子了.這個速度,叫第一宇宙速度.

如果要想完全擺脫地球引力的束縛,到別的行星上去,至少要有11.2km/s的速度,這個速度,叫第二宇宙速度.也可以叫逃脫速度.

這個結果是按照地球的質量和半徑的大小算出來的.就是說,一個物體要從地面上逃脫出去,起碼要有這麼大的速度。可是對於別的天體來說,從它們的表面上逃脫出去所需要的速度就不一定也是這麼大了。

一個天體的質量越是大,半徑越是小,要擺脫它的引力就越困難,從它上面逃脫所需要的速度也就越大.

按照這個道理,我們就可以這樣來想:可能有這麼一種天體,它的質量很大,而半徑又很小,使得從它上面逃脫的速度達到了光的速度那麼大。也就是說,這個天體的引力強極了,連每秒鐘三十萬公里的光都被它的引力拉住,跑不出來了。

既然這個天體的光跑不出來,我們然談就看不見它,所以它就是黑的了。光是宇宙中跑得最快的,任何物質運動的速度都不可能超過光速.既然光不能從這種天體上跑出來,當然任何別的物質也就休想跑出來.

一切東西只要被吸了進去,就不能再出來,就象掉進了無底洞,這樣一種天體,人們就把它叫做黑洞.

我們知道,太陽現在的半徑是七十萬公里。假如它變成一個黑洞,半徑就的大大縮小.縮到多少?

只能有三公里.地球就更可憐了,它現在半徑是六千多公里.假如變成黑洞,半徑就的縮小到只有幾毫米.

那裡會有這麼大的壓縮機,能把太陽 地球縮小的這麼!這簡直象《天方夜譚》裡的神話故事,黑洞這東西實在太離奇古怪了。但是,上面說的這些可不是憑空想象出來的,而是根據嚴格的科學理論的出來的.

原來,黑洞也是由晚年的恆星變成的,象質量比較小的恆星,到了晚年,會變成白矮星;質量比較大的會形成中子星.現在我們再加一句,質量更大的恆星,到了晚年,最後就會變成黑洞.所以,總結起來說,白矮星 中子星和黑洞,就是晚年恆星的三種變化結果.

現在,白矮星已經找到了,中子星也找到了,黑洞找到沒有?也應該找到的.主要因為黑洞是黑的,要找到它們實在是很困難。

特別是那些單個的黑洞,我們現在簡直毫無辦法。有一種情況下的黑洞比較有希望找到,那就是雙星裡的黑洞.

雙星就是兩顆互相饒著轉的恆星.雖然我們看不見黑洞,但卻能從那顆看的見的恆星的運動路線分析出來.這是什麼道理呢?

因為,雙星中的每一個星都是沿著橢圓形路線運動的,而單顆的恆星不是這樣運動。如果我們看到天空中有顆恆星在沿橢圓形路線運動,卻看不到它的'同伴',那就值得仔細研究了。我們可以把那顆星走的橢圓的大小,走完一圈用的時間,都測量出來.

有了這些,就可以算出來那個看不見的'同伴'的質量有多大。如果算出來質量很大,超過中子星能有的質量,那就可以進一步證明它是個黑洞了。

在天鵝星座,有一對雙星,名叫天鵝座x-1.這對雙星中,一顆是看的見的亮星,另一顆卻看不見.根據那可亮星的運動路線.

可以算出來它的'同伴'的質量很大,至少有太陽質量的五倍.這麼大的質量是任何中子星都不可能有的.當然,除這些以外還有別的證據。

所以,基本上可以肯定,天鵝座x-1中那個看不見的天體就是一個黑洞.這是人類找到的第一個黑洞。

另外,還發現有幾對雙星的特徵也跟天鵝座x-1很相似,它們裡面也有可能有黑洞。科學家正對它們作進一步的研究. 「黑洞」很容易讓人望文生義地想象成一個「大黑窟窿」,其實不然。

所謂「黑洞」,就是這樣一種天體:它的引力場是如此之強,就連光也不能逃脫出來!

6樓:鄞燦嬴怡

當一顆恆星衰老時,它的熱核反應已經耗盡了中心的燃料(氫),由中心產生的能量已經不多了。這樣,它再也沒有足夠的力量來承擔起外殼巨大的重量。所以在外殼的重壓之下,核心開始坍縮,直到最後形成體積小、密度大的星體,重新有能力與壓力平衡。

質量小一些的恆星主要演化成白矮星,質量比較大的恆星則有可能形成中子星。而根據科學家的計算,中子星的總質量不能大於三倍太陽的質量。如果超過了這個值,那麼將再沒有什麼力能與自身重力相抗衡了,從而引發另一次大坍縮。

這次,根據科學家的猜想,物質將不可阻擋地向著中心點進軍,直至成為一個體積很小、密度趨向很大。而當它的半徑一旦收縮到一定程度(一定小於史瓦西半徑),正象我們上面介紹的那樣,巨大的引力就使得即使光也無法向外射出,從而切斷了恆星與外界的一切聯絡——「黑洞」誕生了。

7樓:夷榮花千詞

廣義相對論所預言的一種天體。一個質量比太陽大8倍以上的恆星,一般經過超新星爆發留下超過

二、三個太陽質量的核,將沒有任何力能阻止它繼續坍縮。當它的半徑小於引力半徑rg=2gm/c2(g為萬有引力常數,c為光速,m為天體的質量)時,沒有任何物質或輻射能夠逃逸出來,成為黑洞。黑洞的性質由三個參量來表徵,即質量m、角動量j和電荷q。

當j=q=0時,它是球對稱的史瓦西黑洞;當q=0時,則為軸對稱的克爾黑洞。黑洞的性質決定了探測黑洞的困難性。如果向黑洞下落的氣體具有較大的角動量,則應繞著黑洞在軌道上旋轉,形成一個氣盤。

氣盤中相鄰層之間因氣體的粘滯性引起的摩擦產生了熱能,理論計算表明,氣盤應具有很高溫度,在x射線波段產生輻射。另一方面,黑洞的質量應大於中子星的質量上限,能夠精確確定質量的是雙星系統。因此,最有希望找到黑洞的是大質量x射線雙星,尤其是天鵝座x-1。

這是一個x射線變源,它有一個光學對應體,從這個9等超巨星的光譜得到視向速度的週期性變化,暗示一個不可見伴星的存在。進一步算出它的質量大於4太陽質量,很可能是8太陽質量,大於中子星的上限2~3太陽質量;另一個有希望的黑洞候選者是大麥哲倫雲x-3,它也是一個x射線雙星,其中不可見天體的質量也是8太陽質量

黑洞是怎麼形成的,宇宙呢,宇宙黑洞是如何形成的?

當一顆質量極大的恆星即將死亡時,它的表層氣體會急速向外膨脹,與此同時其核心會向內壓縮。當外層膨脹到一定程度時,也會重新向內壓縮。當整個恆星壓縮到一定程度,會使得其中心的引力接近無窮大,於是,這種引力使得它的周圍的空間發生嚴重扭曲,其周圍的引力就會非常大,以至於連光都無法逃脫。這個空間中扭曲的區域,就...

宇宙黑洞是如何產生的,宇宙黑洞是怎麼形成的

黑洞 1 2 的產生過程類似於中子星的產生過程 恆星的核心在自身重力的作用下迅速地收縮,塌陷,發生強力 當核心中所有的物質都變成中子時收縮過程立即停止,被壓縮成一個密實的星體,同時也壓縮了內部的空間和時間。但在黑洞 3 情況下,由於恆星核心的質量大到使收縮過程無休止地進行下去,中子本身在擠壓引力自身...

目前,支援黑洞存在的理由是什麼,黑洞形成的主要原因是什麼?

所謂黑洞,一般被認為是引力場達到臨界狀態的某個區域,可吸收碰到甚至靠近它的一切物體,它的引力場是如此之強,就連光也不能逃脫出來。作為本世紀最具有挑戰性 也最讓人激動的天文學說之一,許多科學家正在為揭開黑洞的神祕面紗而辛勤工作著,新的理論也不斷地提出。事實上,這種基於引力場的黑洞很難在實驗室裡用實驗來...